XForms and OpenClinica

Here at Geneuity, we do a lot of contract research work for sponsors of clinical trials.  That sometimes means developing and validating custom assays that aren’t available off the shelf. And this, in turn, often means developing special interfaces for data capture that can’t be configured inside OpenClinica (as yet).

Does that mean we jettison OpenClinica?

No, absolutely not!

Since OpenClinica is open source and dedicated to interoperability, it can be easily extended.  This article describes the specifics of one such case involving XForms.

A while back, Geneuity was developing an ELISA to measure the abundance of a specific protein in plasma.  We needed a single web form with a spreadsheet-like feel and functionality in which lab technicians could enter data, interpolate unknowns, send the resulting interpolated values for insertion into OpenClinica and then perform source data verification.  Additionally, the form needed to be pre-populated with the accession numbers of specimens requiring testing.  The form had to work on any browser and not be dependent on any browser plugins.  And we had to have it fast.

Impossible? No, not with XForms and the open source XForms renderer betterFORM.

XForms have several advantages.  First of all, you author the forms in relatively simple XML while the complicated AJAX that makes the spreadsheet-like feel and functionality is rendered by the renderer and presented to the client browser for you.  Secondly, XForms allows you to easily call upon webservices to populate data items in the form.  In our case, we developed three such services: one to return a list of accession numbers corresponding to specimens yet to be tested along with corresponding hyperlinks directed inside OpenClinica for rapid source data verification (SDV); another to calculate and graph a standard curve and to interpolate the specimen unknowns; and still another to insert the interpolated values into OpenClinica.  The data flow is diagrammed in Figure 1.  Although a great deal is going on behind the scenes, the user experience is seamless as a single form is being used while data retrieval and refreshment are being done without interrupting the display (thanks to AJAX as automatically implemented by betterFORM). The form itself is pictured in Figure 2.

And there you have it.  The bottom-line: no matter how complicated your data capture requirements are, you can count of the interoperability of OpenClinica.

Figure 1. First, the lab tech initially summons the XForm which calls upon OpenClinica via a webservice for the list of specimens for which there are no test results. The tech enters the data and clicks on the appropriate button to call for data interpolation and calculation. After review of the results, the tech then submits the data for insertion into OpenClinica (for more on this see here). Finally, the tech performs source data verification using the hyperlinks populated in the XForm as the result of step 1.
Figure 2. This is a snapshot of the XForm as it exists after interpolation and calculation. Only two specimens are shown, but usually there are many more in a batch.

An Opportunity for Transformational Change in Clinical Trials

Life sciences research is recognized as one of the most technologically advanced, groundbreaking endeavors of modern times. Nevertheless until very recently the preferred technology for executing the most critical, costly stage of the R&D process – clinical trials – has been paper forms. Only in 2008 did adoption of electronic alternatives to paper forms take place in more than half of new trials. This recent uptick in adoption rates is encouraging, but further transformational change in the industry is necessary to fully realize the promise of Electronic Data Capture (EDC) and associated “eClinical” technologies. Two developments that could provide the framework for such change are adoption of open data standards and the use of Open Source Software.

Data standards provide uniform ways to represent information or processes within a specific frame of reference and according to a detailed specification. A standard is “open” when it is not encumbered by patent, cost, or usage restrictions. Open Source Software (OSS) is defined loosely as software that allows programmers to openly read, redistribute, and modify the source code of that software. The combination of OSS and open standards is a proven way to deliver improved flexibility, quality, and efficiency.

A community-driven open source offering that harnesses open standards can produce robust, innovative technology solutions for use in regulated clinical trial environments. Most Open Source Software is built using a collaborative development model. The OSS development and licensing model encourages experimentation, reduces ‘reinvention of the wheel’, and allows otherwise unaffiliated parties to build on the work of others. The result is that OSS can become a key driver of increased IT efficiency and a way to wring out unnecessary costs. In many cases, users can have the best of all worlds: the ability to adopt software rapidly and at low cost, the flexibility to develop and extend their systems as they choose, and the ability to reduce risk by obtaining paid commercial-grade support.

As clinical research struggles to become more automated and efficient, we need to rely on interoperable systems to meet challenges of flexibility, quality, and speed. The OSS development model also naturally leads to the adoption of well-documented, open standards. Because OSS product designers and developers tend to reuse successful components and models where available, OSS technologies are often leading implementers of standards. For example, the National Cancer Institute’s Cancer Bioinformatics Grid (caBIG) initiative is “designed to further medicine’s potential through an open source network” based on open data standards and infrastructure that support sharing of heterogeneous data. This remarkable effort aims to connect large networks of researchers in ways that enables efficient re-use of data, eliminates duplicate systems, and enables new types of translational research.

In industry-sponsored clinical trials, standards such as the CDISC Operational Data Model (ODM), Clinical Data Acquisition Standards Harmonization (CDASH), and Study Data Tabulation Model (SDTM) have gained adoption in both proprietary and OSS software platforms. In some cases, standards are mandated for regulatory submission and reporting (SDTM, clinicaltrials.gov) and obviously must be adopted. Other cases, such as use of ODM, CDASH, and general web standards such as web services and XForms tend to be adopted to the degree they have a compelling business case.

The business case for standards centers on increasing accuracy and repeatability, enabling reuse of data, and enhancing efficiency by use of a common toolset. A well-designed standard does not inhibit flexibility, but presupposes idiosyncrasies and allows extension to support ‘corner cases’. Leading industry voices share compelling arguments how to use standards such as ODM, CDASH, XForms, and Web Services to achieve these goals. Though the details are complicated, the approach offers orchestration of disparate applications and organization of metadata across multiple systems. There is change control support and a single ‘source of truth’ for each data point or study configuration parameter, so when study designs change (as they inevitably do) or a previously committed data point is rolled back, it is automatically shared and manual updates to systems are not necessary. Because the ODM, CDASH, and SDTM are used as a common “language”, the systems know the meaning and structure of data and can process transactions accordingly. Here’s a tangible example:

Lets imagine an IVR system wanted to check with an EDC system if a subject was current in a study (current meaning not dropped out, early terminated or a screen failure).  A Web Service could be offered by the EDC system to respond with a ‘True’ or ‘False’ to a call ‘IS_SUBJECT_CURRENT’ ?  Of course hand-shaking would need to occur before it hand [sic] for security and so on, but following this, the IVR system would simply need to make the call, provide a unique Subject identifier, and the EDC system web service would respond with either ‘True’ or ‘False.  With Web Services, this can potentially occur in less than a second.

Electronic Data Capture – Technology Blog, September 28, 2008

While this integration requirement could be satisfied by development of point-to-point, proprietary interfaces, this approach is brittle, costly, and does not scale well to support a third or fourth-party system participating in the transaction. It is critical that standards be open so that parties can adopt and implement them independently, and later interface their systems together when the business case calls for it. A leading industry blogger makes the case for the openness of standards within the ODM’s ‘Vendor Extension’ architecture: ”The ODM is an open standard, the spec is available for free and anyone can implement it. This encourages innovation and lowers the barriers to entry and therefore costs. Vendor Extensions are not open, the vendor is under no obligation to share them with the market and the effect is that meta-tools and inter-operability are held back.”

Having the software that implements these standards released as open source code only strengthens its benefits. Proprietary software can implement open standards, however given the proprietary vendor’s business interest to lock-in license revenue, might the vendor be tempted into tweaking or ‘extending’ the standard in a way that is encumbered to lock users into their platform? This strategy of “embrace, extend, extinguish” was made famous in the Microsoft anti-trust case of the 1990s, where it came to light that the company attempted to apply these principles to key Internet networking protocols, HTML and web browser standards, and the Java programming language. They hoped to marginalize competing platforms that did not support their “extended” versions of the standards. Thankfully, they had limited success in this effort, and the Internet has flourished into the open, constantly innovating, non-proprietary network that we know today. The eClinical technology field is at a similar crossroads. By embracing open standards, and working concertedly to provide business value in re-usable OSS technology, we can achieve a transformation in the productivity of our clinical technology investments.